Am. J. Hum. Genet. 64:1473, 1999

Mutation Rate in Human Microsatellites

To the Editor:

It is common knowledge that mutation rates of DNA (minisatellite and microsatellite) loci can differ by orders of magnitude. Obviously, the mutation rate is closely related to the degree of polymorphism, which in turn is expressed by the respective heterozygosity rate.

In their article, Brinkmann et al. (1998) confirmed the observation that mutation events in the male germ line may be significantly more frequent than mutation events in the female germ line. They reported that the ratio of paternal to maternal mutations is an impressive 17:3. Because a similar "behavior" was already known for many DNA minisatellites, this trend could have been expected for highly polymorphic short tandem-repeat loci as well (Henke et al. 1993; Olaisen et al. 1993; Henke and Henke 1995). If this is taken into consideration, the compilation of mutations in table 1 gives rise to following questions: Why do Brinkmann et al. (1998) compile the overall number of meioses with respect to the number of mutations? If one takes into consideration that their data are extremely important in parentage testing, would it not be more meaningful to produce a table that unambiguously shows the frequency of mutations in paternal and in maternal meioses? Mutation rates that we found in a recent study are given in table 1.

JÜRGEN HENKE AND LOTTE HENKE Institut für Blutgruppenforschung Köln, Germany

References

Brinkmann B, Klintschar M, Neuhuber F, Hühne J, Burkhard R (1998) Mutation rate in human microsatellites: influence

Table 1

No. of Maternal and	Paternal	Mutations	and
Meioses			

	No. of Mutations/ No. of Meioses		
Locus	Maternal	Paternal	
CSF1PO	0/237	0/165	
D13S317	0/258	0/178	
D18S51	0/286	2/205	
D21S11	1/267	3/189	
D3S1358	0/257	0/176	
D5S818	0/258	0/178	
D7S820	0/256	2/176	
D8S1179	0/213	0/149	
FGA	0/307	3/218	
ACTBP2	0/402	5/315	
THO1	0/394	0/301	
TPOX	0/240	0/167	
VWA	1/258	0/178	

of the structure and length of the tandem repeat. Am J Hum Genet 62:1408–1415

- Henke J, Fimmers R, Baur MP, Henke L (1993) DNA-minisatellite mutations: recent investigations concerning distribution and impact on parentage testing. Int J Legal Med 105:217–222
- Henke J, Henke L (1995) Recent observations in human DNAminisatellite mutations. Int J Legal Med 107:204–208
- Olaisen B, Bekkemoen M, Hoff-Olsen P, Gill P (1993) Human VNTR mutation and sex. In: Pena SDJ, Chakraborty R, Epplen JT, Jeffreys AJ (eds) DNA fingerprinting, state of the science. Birkhäuser Verlag, Basel, pp 63–69

Address for correspondence and reprints: Dr. Jürgen Henke, Institut für Blutgruppenforschung, Hohenzollernring 57, Postfach 1904 20, 50501 Köln, Germany

[@] 1999 by The American Society of Human Genetics. All rights reserved. 0002-9297/99/6405-0029& 0.00